ACR 814 Tradewater International – Thailand 1.0

February 17th, 2023

Tradewater LLC

Table of Contents

Table of Contents	2
A. PROJECT OVERVIEW	5
A1. PROJECT TITLE	6
A2. PROJECT TYPE	6
A3. PROOF OF PROJECT ELIGIBILITY	6
A4. LOCATION	9
A5. BRIEF SUMMARY OF PROJECT	11
A6. PROJECT ACTION	12
A7. EX ANTE OFFSET PROJECTION	12
A8. PARTIES	13
B. METHODOLOGY	14
B1. APPROVED METHODOLOGY	15
B2. METHODOLOGY JUSTIFICATION	15
B3. PROJECT BOUNDARIES	15
B4. IDENTIFICATION OF GHG SOURCES AND SINKS	16
B5. BASELINE	16
B6. PROJECT SCENARIO	17
B7. REDUCTIONS AND ENHANCED REMOVALS	17
B8. PERMANENCE	17
C. ADDITIONALITY	19
C1. REGULATORY SURPLUS TEST	20
C2. COMMON PRACTICE TEST	20
C3. IMPLEMENTATION BARRIERS TEST	20
C4. PERFORMANCE STANDARD TEST	20
D. MONITORING PLAN	23
D1. MONITORED DATA AND PARAMETERS	24
E. QUANTIFICATION	27
E1. BASELINE	28
E2. PROJECT SCENARIO	28

E3. LEAKAGE	29
E4. UNCERTAINTY	29
E5. REDUCTIONS AND REMOVAL ENHANCEMENTS	29
E6. EX-ANTE ESTIMATION METHODS	
F. COMMUNITY & ENVIRONMENTAL IMPACTS	31
F1. NET POSITIVE IMPACTS	32
F2. STAKEHOLDER COMMENTS	32
G. OWNERSHIP AND TITLE	33
G1. PROOF OF TITLE	34
G2. CHAIN OF CUSTODY	34
G3. PRIOR APPLICATION	34
H. PROJECT TIMELINE	35
H1. START DATE	
H2. PROJECT TIMELINE	

A. PROJECT OVERVIEW

A1. PROJECT TITLE

Tradewater International – Thailand 1.0 (hereinafter referred to as "Project").

A2. PROJECT TYPE

Ozone Depleting Substances

A3. PROOF OF PROJECT ELIGIBILITY

The Project is eligible under the "Methodology for the Quantification, Monitoring, Reporting and Verification of Greenhouse Gas Emissions Reductions and Removals from the Destruction of Ozone Depleting Substances from International Sources, Version 1.0". Additional eligibility requirements as noted in the ACR Standard, Version 7.0 are included below.

Criterion	Requirement	Proof of Project Eligibility
ODS Material	Only the destruction of eligible ODS refrigerants CFC-11, CFC-12, CFC-13, CFC-113, CFC-114 and CFC-115 are eligible under this Methodology.	The only ODS that will be included for crediting will be eligible refrigerants.
Stockpile Limitation	Any refrigerants obtained from a government stockpile or inventory are eligible only if they are not required to be destroyed or converted.	The refrigerants in this project originate from a government stockpile that is not required to be destroyed or converted.
Location	Project located outside of the United States and its territories.	Destruction occurred at WMS (BPEC), Samut Prakan, Thailand
Additionality	Eligible offsets must be generated by projects that yield additional GHG reductions that exceed any GHG reductions otherwise required by law or regulation or any GHG reductions that would otherwise occur in a conservative business-as-usual.	There is no mandate for the destruction of ODS CFC refrigerant under Customs Supervision in the country of origin (Thailand). In the absence of this project, the ODS refrigerant would have been vented or leaked into the atmosphere under business-as-usual scenarios. The project sources meet all other requirements of the Methodology.
Start Date	Project start date is defined as the date on which the earliest destruction activity of a project commences, documented on a Certificate of Destruction.	The project start date and destruction commencement date are the same date as documented on the included Certificate of Destruction.
Reporting Periods	Reporting period must not exceed 12 consecutive months. Project reporting period begins on the project start date.	Project reporting period begins on the project start date and does not exceed 12 months. This reporting period is provided in the included Monitoring Report.
Crediting Periods	Project crediting period is ten years and begins on the project start date.	Project crediting period begins on the project start date and will be ten years.

Table 1: Eligibility Requirement form the Methodology, sections 2.2.1 and 3

		The crediting period is provided in the included Monitoring Report.
Regulatory Compliance	Projects must maintain material regulatory compliance. To do this, a regulatory body/bodies must deem that a project is not out of compliance at any point during a reporting period.	This project maintains regulatory compliance through the entirety of the reporting period.

Table 2: Applicability Requirements from ACR Standard version 7.0, chapter 3 (not already covered in the Methodology).

Criterion	Requirement	Proof of Project Eligibility
Minimum Project	The duration of the Minimum Project	There is no risk of reversal for this
Term	Term for specific project types is	project, so the minimum project term is
	defined in the relevant ACR sector	not applicable.
	requirements and/or methodology.	
	Project types with no risk of reversal	
	after crediting have no required	
	Minimum Project Term.	
Real	GHG reduction and removals shall	The GHG reductions occurred after the
	result from an emission mitigation	ODS was destroyed, and prior to the
	activity that has been conducted in	verification process and credit issuance.
	accordance with an approved ACR	
	methodology and is verifiable. Credits	
	will not be issued on an ex-ante basis.	
Emission or	For projects reducing or removing	Tradewater LLC (hereinafter referred to
Removal Origin	direct emissions, the following	as "Tradewater") is the project
	requirement applies: The Project	proponent and owns the ODS obtained
	Proponent shall own, have control	for this project.
	over, or document that effective	
	control exists over the GHG sources	
	and/or sinks from which the emissions	
	reductions or removals originate.	
Offset Title	Project Proponent shall provide	Tradewater has provided documentation
	documentation and attestation of	of undisputed title to all offsets. Title to
	undisputed title to all offsets prior to	offsets is clear, unique, and uncontested.
	registration, including chain of	No offsets have been sold in the past.
	custody documentation if offsets have	
	ever been sold in the past. Title to	
	offsets shall be clear, unique, and	
	uncontested.	
Additional	Every project shall use either an ACR-	The Project fulfills the performance
	approved performance standard and	standard set in the Methodology and
	pass a regulatory surplus test, as	passes a regulatory surplus test, ensuring
	detailed in the Methodology, or pass	that the GHG emission reductions are
	a three-pronged test of additionality	additional of those that would have
	in which the project must:	occurred in the advance of the Project

	1. Exceed regulatory/legal	Activity and under a business-as-usual
	requirements;	scenario.
	2. Go beyond common practice;	
	and	
	3. Overcome at least one of	
	three implementation	
	barriers: institutional,	
	financial, or technical.	
Permanent	For projects with a risk of reversal of	There is no risk of reversal of GHG
	GHG removal enhancements, Project	removal enhancements for this project
	Proponents shall assess risk using an	type.
	ACR-approved risk assessment tool.	
Net of Leakage	ACR requires Project Proponents to	Leakage is not applicable to this project
	address, account for, and mitigate	type.
	certain types of leakage, according to	
	the relevant sector requirements and	
	methodology conditions. Project	
	Proponents must deduct leakage that	
	reduces the GHG emissions reduction	
	and/or removal benefit of a project in	
	excess of any applicable threshold	
	specified in the methodology.	
Independently	ACR requires third-party validation of	This project is validated and verified by a
Validated	the GHG Project Plan by an	third-party ACR-approved VVB in
	accredited, ACR-approved VVB once	accordance with the ACR standard.
	during each Crediting Period and prior	
	to issuance of ERTs. Validation can be	
	conducted at the same time and by	
	the same VVB as a full verification;	
	however, the deadline for validation is	
	determined by the methodology	
	being implemented and the project	
	Start Date (see above). Governing	
	documents for validation are the ACR	
	Standard, including sector-specific	
	requirements, the relevant	
	methodology, and the ACR Validation	
	and Verification Standard.	
Independently	Verification must be conducted by an	This project is validated and verified by a
Verified	accredited, ACR-approved VVB prior	third-party ACR-approved VVB in
	to any issuance of ERTs and at	accordance with the ACR standard.
	minimum specified intervals. ACR	
	requires verifiers to provide a	
	reasonable, not limited, level of	
	assurance that the GHG assertion is	
	without material discrepancy. ACR's	
	materiality threshold is ±5%.	
Community and	ACR requires that all projects develop	The Project maintains a net positive
Environmental	and disclose an impact assessment to	impact, as the quantified amount of GHG
Impacts	ensure compliance with	emissions has been eliminated and

environmental and community	serves as an effort against climate
safeguards best practices.	change.
Environmental and community	
impacts should be net positive, and	Upon careful examination, no negative
projects must "do no harm" in terms	impacts from the project have been
of violating local, national, or	identified. Destruction of ODS refrigerant
international laws or regulations.	is highly monitored by the destruction
Project Proponents must identify in	facility, and destruction occurred within
the GHG Project Plan community and	all applicable regulatory limits for
environmental impacts of their	emissions and local environmental
project(s). Projects shall also disclose	impact.
and describe positive contributions as	
aligned with applicable sustainable	
development goals. Projects must	
describe the safeguard measures in	
place to avoid, mitigate, or	
compensate for potential negative	
impacts, and how such measures will	
be monitored, managed, and	
enforced. ACR does not require that a	
particular process or tool be used for	
the impact assessment as long as	
basic requirements defined by ACR	
are addressed (See Chapter 8). ACR	
projects can follow internationally	
recognized approaches such as The	
World Bank Safeguard Policies, or can	
be combined with the Climate	
Community and Biodiversity Alliance	
(CCBA) Standard or the Social Carbon	
Standard for the assessment,	
monitoring, and reporting of	
environmental and community	
impacts.	

A4. LOCATION

The project location will be Thailand, in that all ODS material will be collected and/or acquired in Thailand. Waste Management Sia LTD (WMS) has custody of the ODS material, which was acquired from the Thai Customs Department, and WMS is also the location of the consolidation activities. The material is also to be destroyed in WMS facilities, located in the Samut Prakan province, in Bangpoo Environmental Complex Col. Ltd (BPEC).

The address and GPS coordinates for the WMS destruction facility are:

965 Moo 2 Soi 3B Bangpoo Industrial Estate, Sukhumvit Rd Bangpoo Mai, Muang Samutprakarn, Samutprakarn 10280 Thailand

Latitude: 13.943

Longitude: 100.5789

A5. BRIEF SUMMARY OF PROJECT

Description of project activity

The project activity is the destruction of eligible ODS refrigerant, specifically CFC-12, which derives from a government stockpile in the custody of Thailand's Customs Department on or before 2007. The Thai government had no mandate to destroy or convert this material but also had no access to funding to dispose of the ODS refrigerant.

The Customs Department transferred ownership of the material to WMS, and established WMS as the party responsible for transporting the refrigerant from the Customs Department facilities to the WMS warehouse for consolidation and later disposal. Upon receipt of the material at the WMS warehouse, WMS transferred ownership of the cylinders, including ownership of any carbon offset credits that result from destruction, to Tradewater. Tradewater's role is to provide financial and logistical support to ensure the material is destroyed following all the Montreal Protocol and ACR requirements.

Under business-as-usual, the ODS refrigerant would remain in storage, as the Customs Department did not have the means to dispose of the material. The stored CFC-12, which is contained in disposable cylinders, will gradually vent over time, through corrosion and deterioration of the cylinders and their risk of venting is mitigated by destruction at WMS, a destruction facility that meets the Montreal Protocol's TEAP standards provided in the *Report of the Task Force on Destruction Technologies*.

Background information

Refrigerants such as R-12 were historically used for industrial refrigeration and in air conditioners for automobiles and trucks since the 1930s. R-12 was fully banned from production under the Montreal Protocol in 2010 because of its adverse impacts on the ozone layer. Although production was banned by the Montreal Protocol, its continued usage was not.

In Thailand, ODS material was stockpiled by the Government, through the Customs Department, over many years, on and before in 2007. These stockpiles of virgin CFC-12 require an end-of-life solution, one of which is destruction. However, there is currently no law, rule or regulation requiring the destruction of ODS when it is in Customs' custody, and no financial or logistical infrastructure to ensure the material is destroyed safely and consistent with the requirements of the Montreal Protocol. As a result, the ODS material in Thailand is released into the atmosphere slowly because it simply remains in stockpiles with no future use.

Project Purpose and Objectives

The purpose of this project is to offset the emissions that would have been released by the stockpiled ODS refrigerants, which would otherwise sit and leak into the atmosphere slowly because it remains in stockpiles with no future use.

A6. PROJECT ACTION

Description of Prior Physical Conditions

In the business-as-usual scenario, ODS refrigerants are stockpiled and stored in various parts of the country, in disposable containers that are not designed to store refrigerant for long periods of time. Under this scenario, ODS refrigerant will leak into the atmosphere, because the containers in which they are held degrade or slowly leak.

Description of how the Project will Achieve GHG Reductions

This project achieves emission reductions through the destruction of ODS refrigerant, instead of holding it in containers at risk of eventual leakage or release. This Project measures the amount of assumed emissions if the ODS were vented under business-as-usual scenario against the emissions prevented by the destruction of the same material. Plainly, destruction yields significantly lower net emissions than the business-as-usual scenario.

Description of Project Technologies, Products, Services, and Expected Level of Activity

After the ODS refrigerant stockpiles were transferred to Tradewater's ownership, the disposable cylinders were counted, weighed, and consolidated into an ISO tank in a WMS warehouse located in Samut Prakan, Thailand, and from there, the ISO tank was transported to the WMS destruction facility and destroyed.

As part of the monitoring activities, the destruction facility monitors and registers the relevant parameters in their CEMs data system in real time and these are collected every minute. Pressure and flow rate are monitored continuously on a separate stage of the furnace for gaseous substances such as ODS and collected every half hour.

The samples were taken by trained WMS technicians at the WMS warehouse, where the inventory and filling activities took place, and while the ODS was in the possession of WMS, the company that destroyed the material The sample was sent to a third-party qualified laboratory for its analysis.

A7. EX ANTE OFFSET PROJECTION

The ex-ante offset projection is not applicable to this methodology, as emissions reductions are calculated for the 10-year crediting period in the first reporting period. The total emissions reduction for this reporting period are $192\ 244\ tCO_2e$.

Project	Location	Vintage	Total ERTs
Tradewater	Thailand (Origin and	2022	192 244
International –	Destruction)		
Thailand 1.0			

A8. PARTIES

Table 3: Parties involved in Project				
Entity	Name	Role/Title	Contact Info	Responsibility
Tradewater LLC	María José	Director of	Rohrmoser, Edificio	Project
	Gutiérrez Murray	International	TriBca, 19A, Calle	Proponent
		Programs	80, Ave 3, Costa	
			Rica	
			<i>Office: +506</i>	
			21077344	
Waste	Sutthida Fakkum	Senior Compliance	965 Moo 2 Soi 3B	Destruction
Management		& EHS Manager	Bangpoo Industrial	Facility
Siam LTD			Estate, Sukhumvit	
			Rd Bangpoo Mai,	
			Muang Samut	
			Prakan, Samut	
			Prakan 10280	
			Thailand	
			Mob. +66	
			899201042	

<u>Tradewater LLC – Project Proponent</u>

Tradewater LLC has been in operation since 2016 and is a mission-driven company. Tradewater's aim is to collect and destroy greenhouse gases found around the world while creating economic opportunity. Tradewater as a whole has a goal of eliminating 3 million tons of CO₂ annually.

Waste Management Siam LTD – Destruction Facility

WMS is located in Bangpoo Environmental Complex or BPEC and constructively utilizes factory waste to produce steam and electricity advanced clean air technologies, utilizing a Fluidized Bed Incinerator. WMS is part of the DOWA Holdings CO, LTD.

B. METHODOLOGY

B1. APPROVED METHODOLOGY

The Project uses the Methodology for the Quantification, Monitoring, Reporting and Verification of Greenhouse Gas Emissions Reductions and Removal from the Destruction of Ozone Depleting Substances from International Sources Version 1.0 (hereinafter referred to as "Methodology").

B2. METHODOLOGY JUSTIFICATION

The Project involves the destruction of ODS refrigerant CFC-12. Thailand does not have a law requiring destruction of refrigerants under the Montreal Protocol nor is there a rule or law requiring government stockpiled ODS refrigerants to be destroyed or converted. Because these refrigerants have been phased out worldwide and there are less impactful substitutes, and their production has been banned, their destruction will not trigger any additional CFC refrigerant production. Additionally, the Customs Department has maintained the material in stockpiles since 2007 and neither this Department nor any other related government authority, have been able to deal with the stockpiles because this represents an economic hardship, and there are no funds available to destroy the material.

B3. PROJECT BOUNDARIES

The geographic boundary of the Project is WMS facility, located at 965 Moo 2 Soi 3B Bangpoo Industrial Estate, Sukhumvit Rd Bangpoo Mai, Muang Samutprakarn, Samutprakarn 10280 Thailand. The reporting period is December 17th, 2022 to January 23rd, 2023 and the crediting period December 17th, 2022 to December 16th, 2032.

Additional SSRs within the project boundaries are ODS and Transport to Destruction Facility.

B4. IDENTIFICATION OF GHG SOURCES AND SINKS

Table 4: Green	house Gases and Sources (source:	Metho	dology)
GHG Source, Sink, or Reservoir (SSR)	Source Description	Gas	Quantification Method
Transport to Destruction Facility	Fossil fuel emissions from the vehicular transport of ODS from aggregation point to final destruction facility.	CO ₂	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$
ODS Use	Emissions of ODS from use, leaks, and servicing through continued operation of equipment.	ODS	$BE_{refr} = \sum_{i} (Q_{ref,i} \times ER_{refr,i} \times GWP_{i})$
ODS Use	Emissions of substitute from use, leaks, and servicing through continued operation of equipment.	CO₂e	$Sub_{refr} = \sum_{i} (Q_{ref,i} \times SE_{i})$
Destruction	Emissions of ODS from incomplete destruction at destruction facility.	ODS	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$
Destruction	Emissions from the oxidation of carbon contained in destroyed ODS.	CO2	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$
Destruction	Fossil fuel emissions from the destruction of ODS at destruction facility.	CO ₂	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$
Destruction	Indirect emissions from the use of grid-delivered electricity.	CO ₂	$Tr\&Dest = (Q_{ODS} \times EF) + (Q_{BA} \times EF) + (Q_{intf} \times EF)$ $+ (Q_{intf} \times EF)$

B5. BASELINE

The baseline scenario selected for the project related to ODS refrigerant, in which the following emissions rates are assumed under business-as-usual:

Table 5 Parameters for ODS Refrigerants (source: Methodology, Appendix A)		
ODS	10-year cumulative emission rate	100 years global warming potential
	(%/10 years)	(MT CO ₂ E/MT ODS)
CFC-11	89%	4750
CFC-12	95%	10900
CFC-13	61%	14400
CFC-113	89%	6130
CFC-114	78%	10000
CFC-115	61%	7370

In this Project, the CFC-12 material was originally stored in various parts of Thailand under Customs Department custody and supervision. It was transferred to Tradewater through WMS, and finally destroyed at WMS, a local destruction facility. WMS was in charge of the movement of the material from the Customs storage locations to the WMS warehouse at Samut Prakan. As explained below in the "Regulatory Surplus" section, there is no mandate to destroy the ODS refrigerant in the government stockpile

All the ODS sat in deteriorating cylinders with no alternative use. All of these circumstances assure that the ODS without particular use would remain in storage, where it risked leaking, and being released into the atmosphere slowly from the deterioration of the containers.

B6. PROJECT SCENARIO

The project scenario is the destruction of CFC-12 which otherwise would remain in storage indefinitely until a management option could be financed

The project abides with all applicable rules and regulations. The ODS refrigerant in this particular case is subject to the Customs Act, which grants the Customs Department broad authority to manage seized materials as a "national item." For this reason, the arrangement between the Customs Department and WMS required that the Customs Department supervise the transportation of the ODS refrigerant to WMS, the storage of the ODS refrigerant at WMS, the filling of the ODS refrigerant, and the destruction process.

The ODS is destroyed in compliance with all the applicable laws and regulations as well. This includes environmental and health and safety regulations that apply to the WMS facility.

B7. REDUCTIONS AND ENHANCED REMOVALS

Through this project, greenhouse gas reductions are achieved by preventing the inevitable release of the refrigerant ODS into the atmosphere – either through leakage from degrading systems and storage, or from accidental venting during the movement of the cylinders. The reductions are calculated by baseline emissions minus the project emissions.

B8. PERMANENCE

There is no risk of reversal for this project offsets, as once destroyed the associated GHG reductions are fixed.

C. ADDITIONALITY

C1. REGULATORY SURPLUS TEST

In order to pass the regulatory surplus test, a project must not be mandated by existing laws, regulations, statutes, legal rulings, or other regulatory frameworks in effect as of the start date that directly or indirectly affect the credited offsets.

The ODS refrigerant destroyed in this project is considered a "national item" under Customs Law because it was seized and stockpiled by the Customs Department. As such, it is exempt from other Thai regulations, including the Hazardous Substance Act B.E. 2535, which provides in Clause 15 that a specific law, like the Customs Law, takes precedence over the more general law.

The lack of a mandate to destroy a "national item" was confirmed in a letter, dated 18th August 2022, addressed from the Director of Investigation and Suppression Bureau from the Customs Department to the President of WMS, with the subject of "Delivery of ODS under the supervision of Thai Customs to destroy at BPEC" (document available upon request). The letter states the following:

"Thai Customs consulted with the Department of Industrial Works (DIW), and it is confirmed that Thai Customs can deal with the confiscated ODS by applying the regulations of Customs. And, as per the Regulations of the Customs Department on Criteria, Methods, and Conditions of Distribution of the Confiscated Goods, there is no mandate on destruction of confiscated ODS."

In conclusion, neither the Customs Act, nor any other existing laws, regulations, statutes, legal rulings, or other regulatory frameworks in effect as of October 5, 2022, requires the destruction of the ODS refrigerant in this project. Therefore, the project passes the regulatory surplus test.

C2. COMMON PRACTICE TEST

Not applicable.

C3. IMPLEMENTATION BARRIERS TEST

Not applicable.

C4. PERFORMANCE STANDARD TEST

Refrigerant ODS in a business-as-usual scenario is used only when the existing systems are old enough to still process this type of refrigerant. When this is not the case, ODS refrigerant is either stored in their original disposable containers or in larger containers for possible use or recovered from existing systems in the process of decommissioning or retrofitting, thereby requiring an end-of-life solution. Additionally, the material for this project was seized by Customs Department on or before 2007, and therefore it cannot be used and was stuck in a stockpile because Thailand did not mandate its destruction, nor did it possess financing to destroy the material. All ODS sources for this project came from Thailand, and were destroyed

in a destruction facility that meets the Montreal Protocol's TEAP standards provided in the *Report of the Task Force on Destruction Technologies*.

The GWP of CFC-12 is above, in Table 5. The GHG emissions generated by the project are significantly less than the business-as-usual scenario for all refrigerant types, and the emissions reductions are greater than those in the baseline scenario.

The CFC ODS sourced for this project, along with the project activities, meet the eligibility requirements:

- This material would otherwise eventually be vented into the atmosphere in the business-as-usual scenario.
- The material was destroyed via an eligible destruction facility.
- Point of Origin and Chain of Custody for this material is outlined in the supporting documents, located in the folder Chain of Custody.
- Tradewater has monitored the applicable SSRs within the project boundary.
- The emissions have been quantified aligned with Chapter 5 of the Methodology, as indicated in section E, and shown in the Project Assertion Spreadsheet.

D. MONITORING PLAN

D1. MONITORED DATA AND PARAMETERS

Data or Parameter Monitored	Legal Requirement Test
Unit of Measurement	N/A
Description	Emissions reductions achieved through this project
	and methodology must not be required by any
	existing law or regulation
Data Source	Thailand Customs Department and The National
	Ozone Protection Division from the Department of
	Industrial Works (DIW)
Measurement Methodology	N/A
Data Uncertainty	Low
Monitoring Frequency	Once per project
Reporting Procedure	Review of existing laws around ODS refrigerant
	management
QA/QC Procedure	Regular review of current laws and regulations
	surrounding ODS refrigerants, particularly CFCs.
Notes	

Data or Parameter Monitored	Mass of ODS mixture in each container		
Unit of Measurement	Kilograms		
Description	The total quantity of ODS refrigerant in a		
	container.		
Data Source	Manual weight tickets taken pre and post		
	destruction for each individual container		
Measurement Methodology	Section 5.1 of Methodology		
Data Uncertainty	Low		
Monitoring Frequency	Once per project		
Reporting Procedure	Gross weight of cylinders using calibrated scale,		
	taken before and after destruction		
QA/QC Procedure	Scale calibrations, CEMs data confirms destruction		
	parameter throughout process		
Notes			

Data or Parameter Monitored	Concentration of ODS mixture in each container	
Unit of Measurement	Percent	
Description	The distribution of ODS refrigerant in each	
	container (along with any other contaminants,	
	moisture, or HBR)	
Data Source	Sample data via lab analysis provided by an ISO	
	17025 certified third-party laboratory.	
Measurement Methodology	Appendix C of Methodology	
Data Uncertainty	Low	

Monitoring Frequency	Once per project	
Reporting Procedure	Lab analysis report	
QA/QC Procedure	Composition and concentration are analyzed at an	
	ISO 17025-certified laboratory that is not affiliated	
	with the project proponent using the AHRI	
	Standard 700.	
Notes		

Data or Parameter Monitored	Q _{refr,i}		
Unit of Measurement	MT		
Description	The total weight of ODS refrigerant sent for destruction (baseline).		
Data Source	Weight tickets taken both pre- and post- destruction coupled with lab analysis		
Measurement Methodology	Section 5.1 of Methodology		
Data Uncertainty	Low		
Monitoring Frequency	Once per project		
Reporting Procedure	Net weight of cylinders using calibrated scale		
QA/QC Procedure	Scale calibrations; CEMs data confirms destruction;		
	lab analysis confirms mass percentage and		
	identification of ODS refrigerant		
Notes			

Data or Parameter Monitored	Q _{ODS}	
Unit of Measurement	MT	
Description	The total quantity of ODS refrigerant sent for	
	destruction (project).	
Data Source	Weight tickets taken both pre- and post-	
	destruction coupled with lab analysis and	
	quantifications	
Measurement Methodology	Section 5.2 of Methodology	
Data Uncertainty	Low	
Monitoring Frequency	Once per project	
Reporting Procedure	Net weight of cylinders using calibrated scale; lab	
	analysis	
QA/QC Procedure	Scale calibrations performed CEMs data confirms	
	destruction; lab analysis confirms mass percentage	
	and identification of ODS refrigerant	
Notes		

E. QUANTIFICATION

E1. BASELINE

The baseline emissions are approximately 206 044 tCO_2eq : For details, please see the Project Assertion Emissions document.

$$BE_{refr} = \sum_{i} (Q_{ref,i} \times ER_{refr,i} \times GWP_{i})$$

Where		Units
BE _{refr}	Total quantity of refrigerant project baseline emissions during the reporting	MT CO ₂ e
	period	
Q _{ref,i}	Total quantity of refrigerant ODS sent for destruction by the offset project	MT ODS
ER _{refr,i}	10-year cumulative emission rate of refrigerant ODS	%
<i>GWP</i> _i	Global warming potential of ODS	MT CO ₂ e /
		MT ODS

E2. PROJECT SCENARIO

The project emissions are approximately 13 799 tCO₂eq: For details, please see the Project Assertion Emissions document.

Total Project Emissions

$PE_t = Sub_{refr} + Tr \& Dest$

Where		Units
PET	Total quantity of project emissions during the reporting period	MT CO ₂ e
Sub _{refr}	Total GHG emissions from substitute refrigerant	MT CO ₂ e
Tr&Dest	Total GHG emissions from transportation and destruction of ODS	MT CO ₂ e

Project Emissions from the Use of Non-ODS Refrigerants

$$Sub_{refr} = \sum_{i} (Q_{ref,i} \times SE_{i})$$

Where		Units
Sub _{refr}	Total quantity of refrigerant substitute emissions	MT CO ₂ e
Q _{ref,i}	Total quantity of refrigerant <i>i</i> sent for destruction	MT ODS
SEi	Emission factor for substitute(s) for refrigerant <i>i</i> , per Table 3	MT CO₂e/ MT ODS destroyed

Project emissions from Transportation and Destruction using the Default Emissions Factors

$$Tr\&Dest = (Q_{ODS} \times EF)$$

Where		Units
Tr&Dest	Total GHG emissions from ODS transportation and destruction, as	MT CO ₂ e
	calculated using default emissions factors.	
Q_{ODS}	Total quantity of ODS sent for destruction in project.	MT ODS
EF	Default emission factor for transportation and destruction of ODS (7.5)	MT CO₂e/ MT
		ODS

E3. LEAKAGE

As defined by the ACR Standard V 7.0, leakage is a term that refers to secondary effects where the GHG emissions reductions of a project may be negated by shifts in market activity or shifts in materials, infrastructure, or physical assets associated with the project. Projects involving the destruction of CFC refrigerant would not encourage the increase of CFC production. Therefore, for this Methodology, "leakage" is not applicable.

E4. UNCERTAINTY

Calculating uncertainty is not applicable because the methodology as written does not require statistical sampling, nor is it a requirement within the quantifications.

E5. REDUCTIONS AND REMOVAL ENHANCEMENTS

The emission reductions are approximately 192 244 tCO₂eq. The project emissions are quantified using the below equation indicated in the Methodology, and further details are available in the Project Assertion Emissions document.

$ER_t = BE_t - PE_t$

Where		Units
ER _t	Total quantity of GHG emission reduction the reporting period	MT CO ₂ e
BE _t	Total quantity of project baseline emissions during the reporting period	MT CO ₂ e
PEt	Total quantity of project emissions during the reporting period	MT CO ₂ e

E6. EX-ANTE ESTIMATION METHODS

Ex-ante estimation methods are not applicable to this methodology, as the emissions reductions for the 10-year crediting period are determined in the first reporting period.

F. COMMUNITY & ENVIRONMENTAL IMPACTS

F1. NET POSITIVE IMPACTS

Tradewater is unaware of any potential negative environmental or socio-economic impacts from this Project. Thailand is part of the Montreal Protocol since 1993 and has been eliminating substances that affect the ozone layer in recent years. Since there is currently no financial and logistical structure to responsibly manage and destroy ODS in Thailand, Tradewater Project activities bring a solution to this problem.

The net positive impacts from the project include the reduction of inevitable emissions of CFC refrigerants in storage via leaks, testing, and accidental venting, or from container degradation. This destruction encourages the transition to safe and effective refrigerant activities, and it will not trigger any additional production because of the complete phase-out of CFCs worldwide. This further encourages innovation within development of more sustainable refrigeration and cooling technologies, as well as encouraging the entire sector to develop technologies that are more responsible and aligned with climate goals. Finally, the emissions reductions resulting from this project help to achieve climate goals by eliminating additional contributors to climate change and global warming.

SDG statement

The Project supports United Nations sustainable development goals (SDG) 1 (No Poverty), 12 (Responsible Consumption and Production), and 13 (Climate Action).

- SDG1: The Project contributes to the local economic development in Thailand. Tradewater's aggregation approach to identifying and collecting ODS fosters and implies participation of various. Tradewater finances local partners to handle the ODS material that they have identified and collected, as well as partners who transport the ODS material within Thailand, creating job opportunities at the local level.
- SDG 12: The Project supports the collection and destruction of one of the most powerful greenhouse gases in the world; paving the way to the development and use of safer and more environmentally friendly alternatives.
- SDG 13: The phase-out to date of most ODS has not only led to the regeneration of the ozone layer but also to significant reductions in greenhouse gas emissions (GHG), as most ODS are also powerful GHGs. Tradewater has the objective to prevent the release of ODS gases into the atmosphere. By identifying, collecting, managing, and destroying refrigerant gases in an appropriate manner, Tradewater aims to prevent ozone depletion, negative environmental impacts, and climate change

F2. STAKEHOLDER COMMENTS

Stakeholders as defined by the ACR Standard is not applicable to this Methodology.

G. OWNERSHIP AND TITLE

G1. PROOF OF TITLE

Tradewater LLC is the Project Proponent. Tradewater LLC possesses the title and rights to all refrigerants destroyed under this Project, which is demonstrated by the transfer of ownership documentation and all the support documentation or other similar documentation. As such, the rights and title to all carbon offset credits created by this Project belong to Tradewater LLC.

G2. CHAIN OF CUSTODY

The offsets have not been bought or sold previously, and the project does not have a forward option contract.

G3. PRIOR APPLICATION

The project has not applied to any other Voluntary Carbon program.

H. PROJECT TIMELINE

H1. START DATE

The Project start date is December 17th, the date on which the earliest destruction activity of the project commenced. The Project start date determination is consistent with the ACR Standard and Methodology.

H2. PROJECT TIMELINE

Relevant Project Activities	Timeline
Project Listed/Initiation of Project Activities	September 15 th , 2022
Project Term	N/A
Crediting Period	December 17 th , 2022 – December 16 th , 2032
Reporting Period	December 17 th , 2022- January 23 rd , 2023
Frequency of Monitoring, Reporting, and	Once per reporting period
Verification	